
AD-A125 648 NUMERICAL ANALYSIS IN FRACTURE MECHRNICS(U) WASHINGTON 11
UNJY SEATTLE DEPT OF MECHANICAL ENGINEERING
A S KOBAYASHI 28 JAN 83 UHA/DME/TR-83/45

UNCLASSIFIED N814-76-C-60 F/G 20/11 L

uurnrnrnFEND



11.1

LIL

11111L A-8

Itl-N IIIl lu'
.2.5 L.4 11111 1.6

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A

S; .'.

... .." : : .":"-.-r .-',.. -. -- ."- . ..• . -.
_ . . .. ,• _ .- .



.MZ' OFFICE OF NAVAL RESEARCH
CONTRACT N00014-76-0060 NR 064-478

Technical Report No.
UWA/DME/TR-83/45

* t.~ NUMERICAL ANALYSIS IN FRACTURE
MEOMiANICS

by

A. S. Kobayashi

January 1983

C ~)

__ The research reported in this technical report was made possible through
LL support extended to the Departmaent of Mechanical Engineerings University of

Washington# by the Office of Naval Research under contract N00014-76-C-0060 NR
C..2 064-478. Reproduction in whole or in part is permitted for any purpose of the

United States Government.

* Departinent of Mechanical
* Engineering

- College of Engineering
* University of Washington

for publc re1~seMAR 2 &~
This dccurnent has b ) a- appioved

77distribution iz uniitd

83 ~2023 190



NUMERICAL ANALYSIS IN FRACTIURE MECHANICS

A. S. Kobayashi

,. Department of Mechanical Engineering. University of Washington
:. Seattle* Washington# USA 98195

ABSTRACT

Recent developments in four numerical techniques in structural mechanics,
which are used to extract fracture parameters for linear elastic, nonlinear
and dynamic fracture mechanics, are reviewed. Primary emphasis is placed on
the finite element methods for determining two- and three-dimensional (2-D and
3-D) stress intensity factors in linear elastic fracture mechanics. Crack
opening displacements (COD) and J-integrals for 2-D, stable crack growth,
ductile fracture, and use of elastic finite element method in its generation
mode for obtaining dynamic elastic fracture parameters are discussed. The
second topic is the finite difference method for analyzing the elasto-dynamic
and elastic-plastic dynamic states In fracturing 2- and 3-D prob'ems. The use
of a super finite difference code to study dynamic ductile fracture using the
void growth and coalescence model Is discussed. The third topic is the
boundary element method which has evolved into a practical tool for numerical
analysis in 3-D linear elastic fracture mechanics. The final topic is the
updated alternating technique, which was merged with a 3-D finite element code
and together with a break-through in its analytical formulation, has become a
cost-effective numerical technique In solving part and complete elliptical
crack problems in 3-D linear elastic fracture mechanics. Comparisons between
the J-integral of a 3-point bend specimen, the stress intensity factor for a
surface flaw specimen and the dynamic stress intensity factor of a fracturing
dynamic tear test specimen obtained by various investigators are made. (--

INTRODUCTION

Successful applications of linear elastic fracture mechanics (LEFM) in
numerous postnortem analyses of failures in aerospace structures of the early

|i 60's and its expanded role in design synthesis in the 70's required precise
knowledge of the stress intensity factors associated with cracks. Such stress
intensity factors of two-dimensional (2-D) and three-dimensional (3-D) cracks,
which are subjected to complex loading conditions can only be obtained through
numerical techniques. As a result, numerical analysis of fracture mechanics
problems became the most active branche of structural mechanics in the 1970's
[13. One of the first numerical solutions in fracture problems, however, is
the finite difference elastic-plastic result of Jacobs in 1950 [2J which was
followed by others In the 1960's [3 - 5). Swedlow et al [6], on the other
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hand, used finite element method to study a similar problem. In essences
these numerical results on the elasto-plastic states in cracked plates were
ahead of their time since no plausible ductile fracture criterion was
available in the early 1960's.

During this period of soul searching* other specialized numerical tech-
niques, which were specially designed to compute mode I (opening mode) SIF in
2-D crack problemss merged. Such techniques include extensive studies using
the boundary collocation method [7], series expansion of a complex mapping
function (83 and the method of Laurent series expansion (9]. The numerical
solutions, which were generated by these special techniques. are still valid
today and are listed in stress intensity factor handbooks and are liberally
quoted in literature as well. These techniques# however, failed to generate
subsequent supporters and thus will not be discussed in this paper.

In contrast the overwhelming popularity of finite element method to-
gether with the growing acceptance of linear elastic fracture mechanics in
structural mechanics in the late 1960's provided the impetus for an orderly
development in the use of finite element method for determining stress inten-
sity factors for 2-D linear elastic fracture mechanics [10]. The explosive
developments in finite element method approaches to linear elastic fracture
mechanics and also to nonlinear as well as dynamic fracture mechanics of the
1970's are documented in several review papers and special conference pro-
ceedings [1. 11 - 163. Limited reviews of available linear elastic fracture
mechanics computer software for fracture mechanics are given in References
[17, 18).

Review papers covering the other three topics of finite difference meth-
od, boundary element method and alternating technique are few and scarce. The
boundary element method, howevere has attracted a large core of users and its
applications to fracture mechanics have been presented at numerous confer-
ences.

The purpose of this paper is to review the above four numerical tech-
* niques in fracture mechanics, with particular emphasis on development of

finite element method following the period covered in Reference (1].

FINITE BELENT MEIHOD

The above mentioned popularity in the use of finite element method in
every aspect of fracture mechanics has resulted in technical papers too
numerous to be included in this review. Thorough reviews on the applications
of finite element techniques to 2-D static and quasi-static problems in
fracture mechanics through the 1970's have appeared in References 1, 11 -
153. The historical and important developments of this era will not be
repeated as this paper will concentrate on the 3-D static and 2-D nonlinear
and dynamic analyses which emerged during and after this period.

A. 3-D Static LEFM Singularity Element

Although 3-D finite element method codes are available commercially, the
mode I stress intensity factor for a seemingly simple surface flaw in a uni-
axial tension plate requires inordinate amount of computer time. The densely
packed 3-D constant strain quadrilaterials along the curved crack front [19]

-2-



for proper modeling of the 1/fF'stress singularity results In an inefficient
use of computer time. Although crack opening displacements (COD) was used to
improve the accuracy of mode I stress intensity factor# K v the accuracy of
such brute force computation remains In doubt. The 3-D caunterpart [20) of
the virtual crack extension method [21] attempted to increase, by computing
the local strain energy change for small crack tip displacements in
conventional displacement elements, the solution accuracy without excessive
number of finite elements.

a. Singularity Element

Computational efficiency can also be improved by incorporating the 1/f r"
strain singularity in the displacement elements. RaJu and Newman [22) used
such singularity element and reduced the effect of interelement displacement
discontinuity by surrounding the crack tip with two layers of "square-root"
elements. A series of nodal forces adjacent to the crack tip was then used to
compute KT . The multitude of 3-D problems analyzed by this procedure include
the surfale flaw problems [23] in pressurized cylinders.

b. Collapsed Quarter-Point Isoparametric Element

The popularity [1] of Barsoum's collapsed quarter-point isoparametric
element [24] Is due to its simplicity in execution which does not require
special subroutines to available 3-D finite element method codes. These
elements have the correct 1/r singularity and together with proper stress
intensity factor extraction procedures will yield stress intensity factor of
sufficient accuracy along the crack front. While many use the crack opening
displacement procedures or the crack-tip stress formula to compute the stress
intensity factor in 3-D problems. few procedures are developed specifically
for 3-D applications. In the following. two such procedures are described.

Ingraffea [26) has shown that for collapsed 20-node isoparametric ele-
ments surrounding the crack front of Figure 1, the three modes of stress
intensity factors can be written in terms of the mapped curvilinear coordin-
ates of , n and 4 as

E 2 K[2vB vC +2vE vF + vD 2vB ' +vC 2vElIll KI=4(l - V

+ vp, - vD, + (-4v B + vC + 
4 vE - vF + 4vB, - Vc, - 4vE, + VF,)

. (vF + v 2v D- VF - VC1 + 2v,] (1)
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where E and v are the modulus of elasticity and Poisson's ratio, respective-
ly. The three stress intensity factors at n distance along the crack front can
be computed by the crack surface displacements of u, v and w on the collapsed
element face of -1. In terms of the physical distance along the z
coordinate

where L is the element length along the crack front as shown in Figure 1.
The quairatic variation in displacement field in the original 20-node element
also results in a quadratic variation in stress intensity factor along each
crack front element.

The accuracy of the stress Intensity factor extraction procedure is de-
monstrated by analyzing the embedded elliptical crack problem solved analy-
tically by Green and Sneddon [27J. Because of symmetry one-eighth of an
elliptical crack in a cube composed of 23 elements and 141 nodes was analyzed
using SAP IV [28]. The maximum errors in the numerical results, when compared
against the theoretical results [27), were 5S and 7% for a circular crack and
an elliptical crack with an aspect ratio of 1.5, respectively. At the tip of
the minor axis where the SIF is maximum in the elliptical crack, the error was
2%.

c. Finite Element Hybrid Method

Since a review on the use of finite element hybrid method in fracture
mechanics appeared in Reference El] substantial progress has been made in

0 improving its computational efficiency. Hybrid formulation is now restricted
to finite elements surrounding the crack front with the crack-tip singularity
being preserved through assumed i/Arr stress or /r displacement field. Compu-

*tational efficiency is achieved by the general purpose finite element code
which models the bulk of the boundary value problem. The effect of inter-ele-
ment discontinuity between the singular and conventional elements is minimiz-

* ed through the hybrid formulation. For 2-D problems* the hybrid method can be
formulated such that one element, which has the assumed 1/fr singularity and
also an assumed compatible boundary displacementst completely encompasses the
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crack tip [29). For 3-D problemss the crack front becomes one of the boundar-
ies of the several hybrid elements which surround the crack tip. The assumed
stress hybrid method is based on an assumed equilibriating stress field, which
contains the proper crack-tip singularity, and on independently assumed bound-
ary displacements 130J. In terms of the local coordinates of n, z and t the
singular stress and corresponding displacements fields are represented as

e 0 30 8 3e0~~~~ cos~( 1-si v~i n"2-) -Sin.( cocs-)

•njcscos-T
zo- _ I 2's'2"2 Si2y n2~ 2

K1  + KI 0

t  2v cos y -2v sin-,

4'2 iTr 0 0 30 0.0.30sin cos~cos• cos (l-sinsin-2  ()
nzr-co 0jT zt "C~i .OS

TK

nt

n  (5-8)cos- 31 co1

1 n K,1 (78 csi - Cos-T + K1  (9-8v)si02

l 5(78vsi1 i (-3+8v)ca4 Cos i-

66
z L II cos -2. (6

where r and 0 are the local polar coordinates in the plane normal to the
crack front. While 2-D finite element method codes can incorporate higher

| order terms in r, such as the constant Fr, r ... terms E31), corresponding
series forms of equations (3) and (4) are not available. The assumed stress
in the crack tip hybrid element is thus represented as

= £ Ps. (/pIre) Km + E Pri j n (xY.Z)n (7):iM oSim m n

where the first term of the above Is equation (4) and the second term is a
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regular polynomial of xt y and z. For a traction free crack, this second term
must satisfy the homogeneous equilibrium equations and the traction free
boundary conditions on the crack surface. The assumed element boundary

.. displacements contain equation (7) for all element boundaries which intersect
with the crack front and satisfy inter-element compatibility. When these
hybrid elements are merged into a general purpose 3-D code, equation (7) will
introduce as unknowns* the three stress intensity factors of K (m= 1,2 or 3)
in addition to the unknown generalized nodal displacement of as

.K K qQ -

-rr Krs

KT K 1 KI nA
-rs _SSj _-mj 1:

(8)

q and K are thus obtained by solving equation (8).

Plan and Moriya [32) used a twelve node, assumed stress hybrid, half
element* as shown in Floure 2. to determine the distribution of stress

8-NODE BASIC 12-NODE BASIC 16-NODE BASIC
ELEMENTS ELEMENTS ELEMENTS

12-NODE HALF 20-NODE HALF 26-NODE HALF
ELEMENT ELEMENT ELEMENT

20-NODE 36-NODE 46-NODE

SUPERELEMENT SUPERELEMENT SUPERELEMENT

Fig. (2) Three-Dimensional Hybrid Elements

intensity factor along a semi-circular surface crack in a tension specimen.
Because of four way symmetry, only one quadrant of the spccimen was analyzed
with 284 nodes and 852 degrees of freedom. The numerical results, when
compared with Smith's results E33) obtained by the alternating technique, were
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within 123 at the free surface and coincided at the maximum crack depth.

The assumed displacement hybrid method is based on an assumed displace-
ment field, which includes equation (6) with K , and independently assumed
element boundary displacements and boundary tra&ions. The general format of
the final element equation is identical to equation (8) where K is treated
also as three unknowns along the the crack front.

Atluri and Katherisean [343 used static condensation to produce a 20 node
quadratic isoparametric super-elemento as shown in Figure 3, based on the

Fig. (3) Super Singular Element

assumed displacement hybrid method. Using this super-element in a general 3-D
finite element code, they analyzed the surface flaw problem with 280 finite
elements and 4815 degrees of freedom. The results are discussed in the last
section entitled "Benchmark Solutions" of this paper.

B. 2-D Nonlinear Singularity Element

Since the early use [63 of constant strain elements for elastic-plastic
finite element method analysis of 2-0 fracture problems" this simple element
is still used today with success, primarily due to the moderate or lack of
stress singularity at the plastically yielded crack tip. Kanninen et al 135J
used such finite element method code in both its generation and application
modes to study stable crack growth and instability of A533-B steel and 2219-
T87 aluminum, center cracked and compact specimens. Loadline displacement and
crack length measurements were input into generation-mode calculations and the
applied load among others were output for evaluation. Figure 4 shows the
computed and measured applied load versus loadline displacement relation of
the steel compact specimen. Other uses of the conventional element include

-8-
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Fig. (4) Load-displacement Curve for A533B Steel CT Specimens

the updated Lagranglan finite-deformation, finite-element analysis by
Mceeking and Parks [36) who studied the Influence of crack-tip blunting on
the J-based characterization of the crack tip region.

For a material with a strain hardening index of n, the strain field of
the dominant singularity at the crack tip under deformation theory of plasti-
city is [37, 383

a. =j a EJ 1/(n+]) - .(e,n)

S EJ

ai 0  or Bj (e,n)

"; a~ij =E -2T ij(B n

ai 0or  ( 10 )

where J is the J-integral as per Rice [393# t and ei 4 are functions of Gand
n, and i is the yield stress. 1

°0
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Early uses of the above singluar stress and strain fields include that of
Hilton [40] who used deformation theory of plasticity to study ductile crack
Initiation under monotonically increasing load. Shih [40] on the other hands
constructed a circular crack tip element with the dominant stress and strain
singularities and studied the changes in elastic-plastic boundaries with
variations in n values under small scale yielding. Atluri et al [42] incorp-
orated the above stress and strain singularities into the hybrid-displacement

CRACKNECRK
TIP

-4-MESH AND NODES
BEFORE TRANSLATION

--- 0-- MESH AND NODES
AFTER TRANSLATION

Fig. (5) Translation of Singular Element

finite elements surrounding the crack tip. The virtual work equation for an
incremental crack growth. Oa, as shown in Figure 5, was used to simulate crack
closure and opening under a cyclic loading condition with a single overload as
shown in Figure 6. The penalty function and superposititon method used by
Yagava et al [43] is similar in formulation where the penalty coefficients are
stiffness coefficients which optimize the potential function under nonlinear
constraints.

For an ideally plastic material, n in equations(9) and (10) yield
*= and F,. with an 1/r singularity. Barsoum [44] showed that the same

"iLanglar qul~ter-point element [24] of elastic analysis will possess the 1/r
strain singularity when the condensed crack tip nodes are allowed to slide.
Shih et al (45] used this quarter point element to model crack tip blunting
and growth. As shown in Figure 7, crack-tip blunting is modeled by separating
the condensed crack tip nodes and crack extension is modeled by sequential
shifting of the crack tip node. The crack tip opening displacement (CTOA) and
crack tip displacement can be detemined directly from Figure 7(c).
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C. 3-D Non-linear Singularity Element

The singularity element used In 3-D elastic-plastic analysis of cracks
apparently is limited to Barsoum's triangular quarter-point element. Although
this element contains only a 1r singularity, Benzley [46) showed heuristical-
ly that when used with a stress-strain relation governed by a power hardening
law, this element provided the correct singular states of strain and stress
interior of the element. deLorenzi [47] used 556 of such 20-noded iso-
parametric elements in an 8300 degree-of-freedom system to study the elastic-
plastic behavior of a surface flaw in the beltline region of a pressurized
reactor vessel. The semi-elliptical crack front was surrounded with triangu-
lar quarter-point elements and a Ramberg-Osgood power hardening law for
stress-strain relation was used. COD at the symmetry planes as shown in
Figure 8, demonstrated the need for a 3-D elastic-plastic analysis since the
plane strain (2-D) approximation clearly overestimated the severity of the
fl aw.

40

35

Co
_130

PLANE STRAIN
I- 25
2.

42 0 -

coS15

I0 3-D ELASTIC-PLASTIC

- %:-i3-D ELASTIC

1000 20 3000 4000 5000

INTERNAL PRESSURE, psi

Fig. (8) COD of a Surface Flaw
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D. 2-0 Dynamic Singularity Element

Dynamic fracture analysis has also been conducted successfully with
conventional elements during the past five years. Such analysis include the
extensive code verifications by Kobayashi et al [48, 49) and the recent work
by Jung et al [50). Accuracy of such simplified finite element method codes
can be improved by using a proper crack node release mechanism which was the
subject of considerable debate in the late 1970's [51 - 53). This writer's
experiences, however, indicate that the simple node release mechanism of lin-
early decreasing crack-tip nodal force yield dynamic stress intensity factor
which are in good agreement with those obtained by photoelasticity [54).
Yagawa et al [55], on the otherhand, represented the crack surface traction,
acting on the extending crack suface, as a Lagrange multiplier, and optimized
the dissipated surface energy during crack extension.

* While singularity elements in dynamic finite element method was used
earlier by Anderson et al [563 and Aoki et al [57), the most successful use of

* such element is by Atluri et al who incorporated the 1//r singularity in the
displacement hybrid crack tip element E58, 59). Figure 9 shows the Atluri's

TYPE A MOVING SINGULAR ELEMENT
TYPE B : DISTORTING REGULAR ELEMENT
TYPE C NON-DISTORTING REGULAR ELEMENT

IEt ¢ t = ou

t Lm

t Z 2.01431

- RE-ADJUSTMENT OF MESH
AT t=2.OAmec

j J ; t 2.0Oec

"t3.04sec

EXAMPLE: v = 1000 rn/sc
at = O.2 Msec

E= 0.2 mm
Fig. (9) Dynamic Crack Growth Using a Simplicity Element

singular element, which moves with the crack tip and retains its shape, and
the continually distorting regular elements surrounding the crack tip.
Periodic mesh readjusbuent is necessary with crack extension when this
procedure is used. Similar approach without the distorting regular elements
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was used by Gunther et al [601. Figure 10 shows good agreement between the
numerically generated dynamic stress intensity factor by Atluri et al and the
theoretical solution by Broberg [61].

- ROERG o/W X 0.0 W

" ATLUR ET AL Z 0 /W X 0.2
"V = 0. 2 Ce L

v:.2*I

L/W = 1.0
AE /W =0.005 1 1 1

1.5 -
FINITE ELEMENT MESH

v AT E-/W 0.2

I.0 R +

0
02 03 0.4 05

E/W

Fig. (10) Dynamic Stress Intensity Factor of Broberg Crack

Literature is void with 3-D dynamic finite element analysis, due in part
to the enormity in computational requirements, but also due to the lack of
definitive experimental observations on 3-D dynamic crack extension. Such
dynamic crack extension history is necessary to execute a dynamic finite
element code in its generation mode. 3-D dynamic analysis by the propagation
mods, on the otherhand, requires apriori a 3-D dynamic crack propagation law
which is equally missing at this time.

FINITE DIFFERENCE MEIHOD

As mentioned in the Introduction, finite difference method predates the
now popular finite element codes in its application to fracture problems.
Subsequent development of the finite difference codes were taken over by weap-
on researchers and re-emerged as vastly superior general purpose codes which

-14-



could solve 3-D problems ranging from dynamic plasticity to gas dynamics. For
examplet the HEMP 3-D code [62] is an explicit finite difference code which
does not require large computer storage. Crack tip singularity Is thus han-
dled by swamping the crack region with large number of zones and no known at-
tempt has been made to incorporate crack tip singularities into the computa-
tion. Such simplified model results in enormous computer time which normally
cannot be executed outside of special laboratories. The code can also handle
ductile fracture with relative ease due to the reduced severity in str as
singularity.

A. Static Analysts

Historically# the available general purpose finite difference codes were
designed to solve complex dynamic problems and thus no static finite differ-
ence programs for analyzing static fracture problems exist to date. In an
overkill attempt to demonstrate the versatility of such supercodess Chen [63]
showed that the static stress intensity factor can be obtained from a simple
average of the stress waves set up in the crack-tip region when high artifi-
cial viscosity is inserted to damp out the stress waves in the 3-D supercodes.
A similar converge scheme using dynamic relaxation was used by Shmuely at al
[64] to obtain the static SIF in a finite thickness, central crack tension
plate.

* -o-

28 BAKERS i

RESULT'
2.4-

.0.4

K26 0 12 14 1

TI  Fig. 11)1 Dynamic Stress Intensity Factor in an
-Impulse Loaded Plate

I~i For elastic analysts, a simple extrapolation scheme is used to extract
Vstress intensity factors from the numerically determined crack tip stresses
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E63]. Figure 11 shows the dynamic stress intensity factor in a center cracked
plate subjected to sudden tension loading. Also shown for comparison is
Baker's solution (65] for a pressurized semi-infinite crack which suddenly
appeared in an infinite plate. Complex fracture problems, such as an inter-
nally or externally surface flawed cylinder subjected to sudden pressuriza-
tion has also been solved [66] by the HEMP code. The advantage of such
supercode, however, lies in its ability to analyze elastic-plastic dynamic
fracture problems, such as a notched bar subjected to sudden tensile loading
[66, 67] and a Charpy V-notched specimen [68]. In these ductile fracture
analyses, a void growth and coalescence criterion E68] was used to predict the
onset and propagation of a ductile crack.

Special purpose finite difference codes have been used to analyze dynamic
fracture problems but the earlier analyses [70# 71] did not focus on viable
dynamic fracture parameters, primarly due to the undeveloped state of science
in dynamic fracture at that time. Firite difference method was used by Pope-
lar et al [72] to study the dynamic elastic response of an internally cracked
cylinder subjected to impulse loadinU. The dynamic stress intensity factor
was determined by the energy release rate calculated from the displacements at
the nodes in the vicinity of the propagating crack tip. Shmuely et al (73]
incorporated a moving substructure, as shown In Figure 12 with the proper 1/(ir

kX

Fig. (12) Stationary and Moving Grid

singularity in their finite difference program. One half reduction in comput-
ing time in static analysis and improved accuracy in energy release rate comp-
utation in dynamic analysis are claimed. As a straightforward application of
a dynamic finite difference shell code, Emery et al [743 studied the axial
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cracking of a pressurized crack with coupled depressurization calculation.
This analysis was extended to large scale yielding with critical CTOA as a
dynamic fracture criterion 75].

BOUNDARY ELEMENT MEIHOD

While the boundary element method, which was earlier referred to as the
boundary integral equation method, as a stress analysis tool dates back to
the mid 1960's [76], its application towards solving fracture mechanics prob-
lems was pioneered by Cruse [77, 78] in the early 1970's. Boundary equation
method requires only the discretization of the boundary of the structure in
contrast to the domain discretization required by finite element method. Thus
boundary equation method is not suitable for analyzing elastic-plastic and
elasto-dynamic fracture problems although some recent work [79, 80] suggests
that such use of boundary equation method may not be far. On the other hand,
the reduced system of equation makes it suitable for solving 3-D linear
elastic fracture mechanics problems although it yields a fully populated,
nonsymmetric system of equations. Also, for an extending crack, boundary
equation method requires only the recomputation of nodes along the crack
surface while finite element method requires complete rameshing around the
original and extended crack. Recent applications of boundary element method
to fracture mechanics has been reviewed by Cruse [81].

A. 2-D Boundary Element Meythod

Since boundary element method emerged as a numerical tool during the
period of successful application of 2-0 finite element method to elasto-static
problems in linear elastic fracture mechanics, its use in 2-D linear elastic
fracture mechanics did not grow until a special Green's function approach [78,
82] was developed. Utilizing the eleastic Green's function for an infinite
plate with a crack and an interior point load, the stress intensity factors
can be represented by the following set of path independent integrals
enclosing a crack tip as

(KI" K1ll) -J RI'II (ZQ)U (Q)ds + JB L!'II(zQ)t i(Q)ds (11)

where uI (Q) and t1 ((D refer to the displaclents an isurface tractions at
boundary point (I. Details of functional, R1  and L P are given In E83].
By taking advantage oif symmetry, Cruse used only sdven boundary points to
obtain KI for a central crack fracture specimen with 6.4 CPU seconds.

Blandford et al (84) eliminated the complex arithmetic involved in the
above by using traction singular quarter-point boundary elements along each
side of the crack tip. The procedure is the boundary element method counter-
part of Barsoum's finite element method procedure E24] where the midpoint in
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the isoparmetric quadratic boundary element is shifted to the quarter point.
This totally numerical procedure eliminates the non-uniqueness of flat crack
modeling [82] and the matrix singularity problem [85]. Atkinson et al [86]
used the path-independent F1 and M integrals [87) to determine K in an edge
cracked square torsion bar with a quadratically varying shear moi{us.

B. 3-D Boundary Element Method

Since the first applications of boundary element method to 3-D linear
elastic fracture mechanics in the early 1970's [85), significant inprovements
has been made in the computational algorithm. The use of quadratic Isopara-
metric boundary element elements with quarter point nodes [89] provided
accurate COD's which were used to extract the K values. Recent solutions to
3-D linear elastic fracture mechanics include tJe surface flaw solutions in a
tension plate [90) and in a pressurized cylinder [91) by Heliot et al and
crack growth studies of surface flaw by Cruse [92).

ALTERNATING TEOINIQUE

Application of the alternating technique to 3-D linear elastic fracture
mechanics was first introduced by Smith et al [93] who solved the semi-circu-
lar surface flaw problem. The procedure was extended to an elliptical crack
by Shah et al (94) who determined K of an embedded elliptical crack near a
free surface. Later, Smith et al (15) extended the solution procedure to K
and K11T determination of an elliptical crack. The alternating techniques if
those filys were relatively inaccurate due to the limited curve fitting capa-
bilities of the third order polynomial of the elliptical crack pressure and of
the modeling of the surrounding finite geometry. A major breakthrough in the
latter was made by Browning et al [96) and Kullgren et al (973 who used a 3-D
finite element code to model the surrounding finite geometry. Grandt [98) and
Barrachin et al (99) used this procedure to analyze surface flaw problems and
in particular, the well studied surface flaw at a hole.

Another significant improvement was made with the derivation of the
complete analytical solution [100] for an embedded elliptical crack in an
infinite solid and subjected to modes I, II and III crack tip deformation.
Nishioka et al used twelve terms of a fifth order polynomial of this analy-
tical solution together with a standard 3-D finite element code to analyze
among other, the surface flaw problem [101) and the internally and externally
flawed pressuaized cylinders [102). Figure 13 shows the reduction in residual
stress with alternating cycles of iteration for analyzing an externally flawed
pressurized cylinder. Figure 14 shows the resultant stress intensity factor
which is compared with those of [103, 104). The finite element method portion
of this alternating technique used 96 20-noded isoparametric elements with

( 181S degrees of freedom and the total CPU time was about 1000 seconds with a
CYBER 74.
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BENOIMARK SOLUTIONS

In most cases, numerical techniques are validated by comparing the numer-
ical results with known theoretical solutions. By nature, these theoreticalproblems in fracture mechanics are simple in geometry and uncomplicated in

loading and thus agreement between the numerical and theoretical solutions are
bound to be good. Theoretical solutions for more realistic fracture problems
do not exist and a consensus between various numerical solutions does not
guarantee their correctness. Lacking other means of comparative study, bench-
mark solutions which are well defined boundary and initial value problems, are
used to eliminate any ambiguity in problem definition and to assure that all
numerical solutions relate to the same problem. Three such benchmark problems
are discussed in the following.

A. 2-D Elastic-Plastic Crack Problem

In 1975, ASTh Committee E24.01.09 undertook a task to compare numerical
solutions to elastic-plastic plane strain problems. A three-point fracture
toughness test specimen with a uniaxial stress-strain relation of A533B steel
was analyzed by 10 respondents and the edited and assmbled solutions were
presented by Wilson [105). Figure 15 shows the average J-value, which was

1.4 A

1.2 
B D F

"21.0 J

CL

0.4

02-

0
I 2 3 4 5 6 7 8 9 10

P, Ibs xl "

Fig. (15) 3 versus Applied Load

computed over several integration paths by each investigator, with Increasing
applied load. While substantial progress has been made in the elastic-plastic
codes in the ensuing six years, the wide differences in the results obtained
in the late 1970's are still indicative of the lack of consensus for valid 2-D
elastic-plastic codes as well as for basic physical laws, such as the consti-
tutive relations under plastic flow under severe strain gradients.
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B. 3-D L EFN Probl m

The surface flaw problm Is an outgrowth of a 1976 workshop at Battelle
Columbus Laboratories at which time several 3-D benchmark problems were desig-
nated for numerical analysis. The numerical results for the sani-elliptical,
surface flaw plates in tension and bending were subsequently assambled and

:- edited by McGowan [106J. Figure 16 shows the normalized stress intensity
factors by six investigators where moderate differences are seen.
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Fig. (16) Stress Intensity Factor for a
Surface-Flawed Tension Plate

C. 2-D Dynamic Crack Problem

While no formal benchmark problem in 2-D dynamic fracture was ever desig-
nated for round robin studies, an informal comparative study was made between
the investigators at the Georgia Institute of Technology, Battelle Columbus
Laboratories and the University of Washington. Dynamic crack propagation in
an A533B steel, dynamic tear test (DTT) specimen was analyzed by generation
calculation using the crack velocity data provided in [107]. Figure 17 shows
the dynamic SIF computed by the three investigators. All three elastic
results are in good agreement with each other.
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CONCLUDING REMARKS

The concluding remarks in this paper could have been taken from Reference
[1] since the four cited and the numerous uncited numerical techniques in
fracture mechanics continue to develop at equal or even higher pace since
Reference (1] was written. Also, the efficiency in numerical techniques
continues to improve despite the rapid increase in the complexity of the
problems studied.

Despite this explosive rate of development, coordinated efforts to evalu-
0 ate the old as well as new numerical codes through benchmark problems are

scarce. In order to properly assess the numerous codes available today, an
international effort in code verification is badly needed at this time.
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